FLOODING & SUBSIDENCE MANAGEMENT

Pumping and Subsidence

Existing System

When rain falls, pipes and canals start to fill and sea levels rise.

Pave

Dry, stable conditions

Proposed System

Delay

Hold water upslope to minimize flooding in low lying areas.

Pipe

Pump

Every drop that falls gets pumped out of the landscape as fast as possible.

Soils

Highly Organic

High Subsidence Potential

Moderately Organic

Moderate Subsidence Potential

High Plasticity Silt and Clay

Shrink and Swell Potential

Elevation

0 ft.

< -6 ft.

< 3 ft.

3 ft. - 6 ft. or within the 100 yr floodplain

> 6 ft.

13 ft. (high point)

Flood Risk Modeling*

*According to CPRA modeling for a 100-yr storm in 2007

Sources: NOAA digital elevation map

Sources: USDA soil map

Pumping and Subsidence

Dry, stable conditions

When rain falls, pipes and canals start to fill and sea levels rise.

Pave

Pump

Drain When Necessary

Assuming loads on pumping stations which reduces energy use and cost.

Houma

Gibson

Gray

Dulac

Chauvin

Bourg

Montegut

Sources: CPRA flood modeling

FEMA DFIRM 100 yr floodplain

Sources: NOAA digital elevation map

Sources: USDA soil map

Highly Organic

High Subsidence Potential

Moderately Organic

Moderate Subsidence Potential

High Plasticity Silt and Clay

Shrink and Swell Potential

Existing System

Pave

Dry, stable conditions

Proposed System

Delay

Hold water upslope to minimize flooding in low lying areas.

Pipe

Pump

Drain When Necessary

Assuming loads on pumping stations which reduces energy use and cost.